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ABSTRACT

The differential rotation of the Sun, as deduced from helioseismology, exhibits a prominent radial shear
layer near the top of the convection zone wherein negative radial gradients of angular velocity are evident in
the low- and midlatitude regions spanning the outer 5% of the solar radius. Supergranulation and related
scales of turbulent convection are likely to play a significant role in the maintenance of such radial gradients
and may influence dynamics on a global scale in ways that are not yet understood. To investigate such
dynamics, we have constructed a series of three-dimensional numerical simulations of turbulent compressible
convection within spherical shells, dealing with shallow domains to make such modeling computationally
tractable. In all but one case, the lower boundary is forced to rotate differentially in order to approximate the
influence that the differential rotation established within the bulk of the convection zone might have upon a
near-surface shearing layer. These simulations are the first models of solar convection in a spherical geometry
that can explicitly resolve both the largest dynamical scales of the system (of order the solar radius) as well as
smaller scale convective overturning motions comparable in size to solar supergranulation (20–40 Mm). We
find that convection within these simulations spans a large range of horizontal scales, especially near the top
of each domain, where convection on supergranular scales is apparent. The smaller cells are advected later-
ally by the larger scales of convection within the simulations, which take the form of a connected network of
narrow downflow lanes that horizontally divide the domain into regions measuring approximately 100–200
Mm across. We also find that the radial angular velocity gradient in these models is typically negative,
especially in the low- and midlatitude regions. Analyses of the angular momentum transport indicate that
such gradients are maintained by Reynolds stresses associated with the convection, transporting angular
momentum inward to balance the outward transport achieved by viscous diffusion and large-scale flows in
the meridional plane, a mechanism first proposed by Foukal & Jokipii and tested by Gilman & Foukal. We
suggest that similar mechanisms associated with smaller scale convection in the Sun may contribute to the
maintenance of the observed radial shear layer located immediately below the solar photosphere.

Subject headings: convection — hydrodynamics — Sun: interior — Sun: rotation — turbulence

1. INTRODUCTION

Helioseismology has revealed that the differential rota-
tion profile observed at the solar photosphere roughly
extends throughout the bulk of the convection zone
(Thompson et al. 1996; Schou et al. 1998). From about 0.75
to 0.95 R�, the angular velocity � has a small radial gra-
dient, particularly at midlatitudes, as seen in Figure 1. In
contrast, regions of strong radial shear are evident near both
the bottom and top of the convection zone (Fig. 1, shaded
areas), and these shear layers are believed to play important
dynamical roles within the solar convection zone. While the
tachocline region at the base of the convection zone has
commanded much recent attention (as it is likely the seat of

the global solar dynamo and the associated 22 yr magnetic
activity cycle), the dynamics within the near-surface shear
layer, extending from 0.95 to 1.00 R�, are also likely to have
additional dynamical consequences that affect the appear-
ance and evolution of flows and magnetic structures visible
at the surface. Such dynamics are at present not well under-
stood but are now becoming accessible to study through
direct numerical simulations that capture the important
effects of sphericity, compressibility, and rotation.

Several questions arise about the near-surface shear layer.
First, what dynamical mechanisms within the coupling of
turbulent convection with rotation lead to such a boundary
layer involving negative radial gradients of �? In contrast,
in the bulk of the convection zone the gradients are much
smaller and positive. Second, why does this boundary layer
have a depth of about 5% in solar radius? Third, does the
presence of such a strong radial shear zone play a significant
role in the complex large-scale meandering flows and revers-
ing meridional circulations that have been shown by helio-
seismology to coexist with the intense smaller scale
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convection in the upper reaches of the convection zone?
These three issues motivate our studies as we seek to resolve
both supergranulation and global-scale responses in our
simulations of convection in rotating spherical shells. Com-
putational constraints have encouraged us to begin by
studying thin shells of such turbulent convection, encom-
passing at this stage only the upper portion of the solar con-
vective envelope. A preliminary account of such modeling is
presented in DeRosa & Toomre (2001). We shall here show
that the resulting multiscale convection is able to redistrib-
ute angular momentum so as to yield radial gradients in �
that are largely in accord with the helioseismic findings.
These first steps are important in defining more complex
simulations to be undertaken within deep convection shells
that capture much of the depth range of the solar convection
zone.

The stratification within the near-surface shear layer
serves to drive vigorous motions possessing a wide range of
spatial and temporal scales, visible at the surface as the con-
vective patterns of supergranulation, mesogranulation, and
granulation (Spruit, Northlund, & Title 1990). Many
aspects of such small-scale but intensely turbulent convec-
tion, influenced by radiative transfer effects and complex
equations of state and opacities, have been studied through
three-dimensional simulations within localized planar
domains positioned near the solar surface (e.g., Stein &
Nordlund 1998, 2000, 2001). The driving in such convection
is enhanced by the latent heat released within the ionization
zones of helium and hydrogen that are present in the near-
surface shear layer (e.g., Rast et al. 1993). These small-scale
turbulent convective motions are likely to facilitate the

transport of angular momentum along both radial and lati-
tudinal velocity gradients within the shear layer and thus
may be able to affect the dynamics within the convection
zone on a more global scale. In particular, the horizontal
extent and overturning time of supergranular flows suggest
that such convection will be at least weakly influenced by
rotational effects, which can yield Reynolds stresses of sig-
nificance in transporting angular momentum within the
layer. The coupling of turbulent compressible convection
with rotation has also been studied extensively in localized
f-plane domains (e.g., Brummell, Cattaneo, & Toomre
1995; Brummell, Hulbert, & Toomre 1996, 1998; Brummell,
Clune, & Toomre 2002; Brandenburg et al. 1996; Chan
2001) using perfect gases, revealing that the presence of
coherent structures associated with strong downflow
plumes and networks play a crucial role in the redistribution
of angular momentum. Such studies are complemented by a
broad range of other simulations of compressible convec-
tion that exhibit intrinsic asymmetries between upflows and
downflows, of complex vorticity structures that influence
the transport of heat, momentum and magnetic fields, and
of rich time dependence involving a broad range of time-
scales (e.g., Cattaneo et al. 1991; Porter &Woodward 1994,
2000; Saikia et al. 2000; Robinson & Chan 2001; Tobias et
al. 2001).

Velocity features larger than the spatial scale of solar
supergranulation are also in evidence in the near-surface
shear layer. Bands of slightly faster rotation, or torsional
oscillations, that gradually propagate toward the equator
as the magnetic activity cycle advances are detected in
Doppler measurements of the surface (LaBonte &
Howard 1982; Hathaway et al. 1996; Ulrich 1998). They
are also seen in global f- and p-mode helioseismic studies
(e.g., Kosovichev & Schou 1997; Schou 1999; Howe et al.
2000b; Vorontsov et al. 2002) and are present over at
least the outer 8% in radius. Even more complex flows
within the near-surface shear layer, now called solar sub-
surface weather (Toomre 2002), are revealed by local-
domain helioseismic techniques such as ring-diagram
analyses (e.g., Hill 1988; Haber, Hindman, & Toomre
1998; Haber et al. 2000; Basu, Antia, & Tripathy 1999)
and time-distance methods (e.g., Duvall, Harvey, & Pom-
erantz 1993; Giles et al. 1997; Duvall & Gizon 2000;
Chou & Dai 2001). Mappings of subsurface flow fields
over a range of depths reveal evolving large-scale hori-
zontal flows that are somewhat reminiscent of jet
streams, meridional circulations that may possess multi-
celled structures in one hemisphere and not in the other,
and distinctive flow deflection in the vicinity of active
complexes (Haber et al. 2002). Although the flow speeds
in the meridional circulations are only of order 20 m s�1,
they may be quite effective in redistributing angular
momentum in latitude, thereby coupling widely separated
regions within the near-surface shear layer and possibly
having a role in its existence.

Photospheric magnetic field observations reveal struc-
tured concentrations that also possess a wide range of
spatial scales, including active regions, sunspots, pores, and
emergent flux elements. On the smallest observable scales,
concentrations of filamentary magnetic flux elements are
found to be laterally advected by larger scale surface flow
patterns. Outflows associated with the convective patterns
of supergranulation and granulation in particular are
observed to readily advect such small-scale flux toward
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Fig. 1.—Variation of angular velocity �/2� with proportional radius
r/R� at selected latitudes as inferred from helioseismic RLS inversions
averaged over 4 yr of GONG data (adapted fromHowe et al. 2000a). Shear
layers (shaded areas), as evidenced by more rapid variations of � with
radius, are observed near the base of the convection zone as well as near the
surface, with the latter region extending from 0.95 to 1.00R�. The gradients
of � in that near-surface shear layer at high latitudes are sensitive to the
inversionmethod and data sets used (Schou et al. 2002)
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intercellular lanes and concentrate these fields on scales
small enough for dissipation to occur (Schrijver et al. 1997;
Berger et al. 1998).

Figure 1 indicates that the radial gradient of angular
velocity � is largely negative at low and midlatitudes within
the near-surface shear layer, such that the rotation rate
decreases by about 2%–4% as one moves outward across the
layer. Such a radial gradient in � may be interpreted as a
tendency for fluid parcels in the convection zone to partially
conserve their angular momentum as they move toward or
away from the axis of rotation. This idea was originally sug-
gested by Foukal & Jokipii (1975) and may explain why
larger scale magnetic tracers at the surface have a faster
rotation rate relative to the photospheric plasma, assuming
that these magnetic features are anchored at a radius below
the photosphere, where the rotation rate is faster. Numeri-
cal simulations of Boussinesq fluids confined to thin shells
(Gilman & Foukal 1979) showed that angular momentum is
roughly conserved along radial lines, and small-scale con-
vective motions are able to transport angular momentum
inward, thereby maintaining the negative radial gradient of
rotation rate with radius for such an incompressible fluid.
Whether the same is true for a compressible fluid is one of
the topics addressed in this paper.

The maintenance of the relatively small radial gradients
of � throughout the bulk of the convection zone must be a
direct consequence of the interaction of rotation with the
turbulent fluid motions that exist within the solar convec-
tion zone. Recent three-dimensional numerical simulations
of such deep convection within rotating spherical shells
(e.g., Miesch et al. 2000; Elliott, Miesch, & Tommre 2000;
Brun & Toomre 2001, 2002) indicate that for a range of
parameter values, solar-like differential rotation profiles can
be established, even with viscous and thermal diffusivities in
a regime far removed from their solar values. Many of these
simulations possess about a 30% contrast in angular veloc-
ity � between the equator and high latitudes and have small
radial gradients of � in the midlatitude regions, features
that roughly match the helioseismic determinations of the
interior rotation profile within the bulk of the convection
zone. Analyses of the angular momentum transport within
these simulations indicate that the fast equatorial rotation
relative to the higher latitudes is primarily maintained by a
complex interplay between global meridional circulation
and Reynolds stresses achieved within the domains, both of
which contribute to the equatorward transport of angular
momentumwith latitude.

The radial velocity planforms within the more laminar
convection zone simulations take the form of rotationally
aligned banana cell structures, with the downflowing fluid
lanes extending throughout most of the radial extent of the
domain. As the level of turbulence is increased, these organ-
ized patterns become less prominent, giving way to a net-
work of narrower downflow lanes that form plumelike
structures at the interstices in the network. Such plumes
tend to possess significant vortical motion and span the
entire domain in radius. The influence of rotation on these
vertical plumes preferentially tilts these structures such that
they are partially aligned with the axis of rotation, which in
turn creates the Reynolds stresses that facilitate angular
momentum transport within the domain. These deep-shell
simulations of the convection zone typically place the upper
boundary at about 0.96 R� and thus do not capture the
smaller scales of convection that exist closer to the surface.

Consequently, the convection in even the most turbulent of
these simulations involves overall pattern scales of order
20�–30�, or several hundred megameters, although the
sheets and plumes associated with the downflow network
are individually narrower and more concentrated.

To understand more clearly some of the physical proc-
esses occurring within the near-surface shear layer of the
solar convection zone, we have constructed numerical simu-
lations of compressible fluids within thin spherical shells
that extend up to 0.98 R�, encompassing solely the near-
surface shear layer region. Continual advances in supercom-
puting technology now permit three-dimensional compres-
sible fluid simulations that explicitly resolve spatial and
temporal scales spanning several orders of magnitude. As a
result, we are able for the first time to employ direct numeri-
cal simulations to investigate the effects of supergranular-
sized convection on the more global dynamics within the
near-surface shear layer of the Sun.

In formulating our simulations, we have adopted the
viewpoint that the latitudinal variation of the angular veloc-
ity in the Sun, with the equatorial regions rotating more rap-
idly than the poles as in Figure 1, is established and
maintained within the bulk of the convection zone some-
where below the lower boundary of our thin shell models.
We have thus imposed a solar-like differential rotation pro-
file as a no-slip lower boundary in three of the four simula-
tions presented here in order to capture some of the
dynamical effects related to such an angular velocity struc-
ture. In so doing, we are implicitly assuming that the global
differential rotation profile is not substantially affected by
the convection within our thin shells, even though in the
Sun such shearing layers could have subtle effects on these
dynamics.

Our primary focus in this paper will be to investigate the
angular momentum transport achieved by multiscale con-
vection, involving both global and supergranular scales,
within shearing layers analogous to the near-surface shear
layer of the Sun. We shall consider radial stratifications that
resemble ones deduced from stellar structure models over
the depth range being studied, although the physics of the
gases is highly simplified. After briefly discussing in x 2 the
governing equations and numerical approach used in solv-
ing them, we review the parameters used to initialize our
thin-shell simulations in x 3. We next examine in x 4 the
multiscale convective velocity patterns of the mature solu-
tions and discuss the meridional circulation, time evolution,
and angular momentum balance achieved within the thin
shell domains. Last, we discuss the connection between
these simulations and the near-surface shear layer of the
solar convection zone and present possible directions for
future research in x 5.

2. GOVERNING EQUATIONS AND
NUMERICAL APPROACH

The convection simulations described here are carried out
using the anelastic spherical harmonic (ASH) computer
code (Clune et al. 1999), which solves the anelastic equa-
tions of hydrodynamics describing a compressible fluid con-
fined to a spherical shell heated from below. The fluid
motions are calculated with respect to a rotating frame. The
complex structures and intricate behavior of the resulting
convection require high spatial resolution, and the flows
must be studied over extended periods of time for statistical
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equilibrium to be achieved. As a result, the ASH code is
designed to run efficiently on massively parallel architec-
tures such as the Cray T3E, SGI Origin2000, and IBM SP-3
machines (e.g., Miesch et al. 2000; Elliott et al. 2000). The
current multiprocessor version follows the numerical
approach first implemented byGlatzmaier (1984).

The ASH code employs a pseudospectral approach,
where all fluid velocities and state variables are projected
onto orthogonal basis functions in each of the three spatial
dimensions. The radial structure of the solution variables is
represented by an expansion based on Chebyshev poly-
nomials characterized by radial order n, while functions of
latitude and longitude are expanded over spherical har-
monic basis functions Ym

‘ characterized by angular degree ‘
and azimuthal order m. This discretization scheme ensures
that the horizontal resolution is approximately uniform
everywhere on the spherical domain when all ð‘;mÞ-pairs
for a given maximum degree ‘max are retained in the modal
expansion (such as the triangular truncation used here).
Conversely, the simplest finite-difference scheme, where
computational grid points are uniformly distributed along
lines of latitude and longitude, suffers from the problem that
the spatial resolution varies with latitude such that the grid
points are more closely spaced near the poles compared to
equatorial regions (colloquially known as the ‘‘ pole prob-
lem ’’). In addition, spectral methods also provide increased
computational accuracy for a given grid size when com-
pared to finite-difference representations.

The ASH code solves an approximate form of the Navier-
Stokes equations known as the anelastic equations. The
anelastic approximation (Gough 1969) allows us to handle
the effects of compressibility while filtering out acoustic per-
turbations that would otherwise severely limit the computa-
tional time step. This approximation is valid when the
convective fluid velocities are subsonic, which in turn
requires that the stratification of the fluid be only slightly
superadiabatic. Such acoustic filtering is achieved by insist-
ing that the time derivative of density vanishes in the con-
tinuity equation or, equivalently, that the divergence of the
momentum be zero or that the momentum vector be
solenoidal. This approximation is effectively equivalent to
allowing pressure disturbances to equilibrate instan-
taneously, forcing the system to evolve on convective rather
than sound-speed timescales. It is therefore implicitly
assumed that sound waves do not play a significant role in
the dynamical evolution of the system, which is in agree-
ment with the expectation that the coupling of convection,
stratification, and rotation are the major dynamical
influences within the convection zone.

The convective motions are computed relative to a
spherically symmetric mean state having a density ���, tem-
perature �TT , pressure �pp, and specific entropy �ss, much as dis-
cussed in Miesch et al. (2000) and Brun & Toomre (2002).
These mean quantities initially satisfy the equation of
hydrostatic equilibrium,

d�pp

dr
¼ ����g ; ð1Þ

where g is the acceleration due to gravity, and a perfect-gas
equation of state

�pp ¼ � � 1

�
cp����TT ; ð2Þ

from which the mean specific entropy �ss is defined (to within
an arbitrary constant) by

d�ss

dr
¼ cp

1

��pp

d�pp

dr
� 1

���

d���

dr

� �
; ð3Þ

where the specific heats at constant pressure and volume are
represented by cp and cv respectively, with their ratio
� ¼ cp=cv. The mean thermodynamic state is allowed to
evolve in time.

The anelastic approximation involves neglecting the time
derivative of density in the mass continuity equation (as
described above), such that

D

x ð���uÞ ¼ 0 ; ð4Þ

and expanding the Navier-Stokes equations around the
spherically symmetric mean state. Perturbations to the state
variables are denoted by �, T, p, and s. The ASH code solves
the equations describing the evolution of the fluid velocity,

���
@u

@t
¼ ����ðu x

D

Þuþ 2���ðu� X0Þ �

D

p� �g ; ð5Þ

and of the specific entropy,

����TT
@s

@t
¼ �����TTðu x

D

Þð�ssþ sÞ þ

D

x qþ � ; ð6Þ

where the viscous stress tensor D and viscous heating term
� are defined

Dij ¼ 2���� eij � 1
3

D

x u�ij
� �

; ð7Þ

� ¼ 2���� eijeij � 1
3

D

x u2
� �

; ð8Þ

with eij denoting the strain rate tensor. The diffusive heat
flux q is defined

q ¼ �s����TT

D

ð�ssþ sÞ þ �rcp���

D

ð�TT þ TÞ : ð9Þ

Furthermore, these equations are subject to the linearized
equation of state,

�

���
¼ p

�pp
� T

�TT
¼ p

��pp
� s

cp
: ð10Þ

As with the temporal scales of motion, fully resolving
all spatial scales of motion in a numerical simulation of
the solar convection zone is infeasible at this time, as the
dynamically active scales range from 102 Mm (of order
the depth of the zone) to 10�4 Mm (typical dissipation
scale), thereby encompassing a factor of at least 106 in
scale. Because current simulations can cope with a range
of only about 103 in each of the three physical dimen-
sions, the ASH code adopts the common approach of
parameterizing the transport properties of subgrid scale
(SGS) turbulent eddies and resolving only the largest
scales of convection, thus becoming a large-eddy simula-
tion (LES).

All LES-SGS simulations require a prescription for
representing the effects of SGS convective motions not
explicitly resolved in the model. Such a scheme may
incorporate characteristics of the resolved flows into their
functional forms (see the reviews by Canuto 1996;
Lesieur 1997; Canuto & Christensen-Dalsgaard 1998) or
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may simply enhance the viscous and thermal diffusivities
relative to their molecular values. We have adopted the
latter approach for simplicity, yet recognize that this
aspect requires considerable attention in the future. The
main drawback of this scheme is that the enhanced diffu-
sion draws energy from larger resolved scales of motion
which should be unaffected by such dissipative effects. In
one alternative approach, known as hyperviscosity, one
allows the enhanced eddy diffusivities to act on fourth-
(or higher) order derivatives of the velocity field, thereby
confining the diffusive effects more toward the smaller
end of the energy spectrum. Another class of SGS models
involves adding extra stress terms to the equations of
motion. Evolution equations for these additional contri-
butions can then be constructed once functional forms
for the correlations between second-order variables are
specified using some kind of a closure hypothesis. As is
true of all LES-SGS studies, one hopes that the specific
form by which the SGS motions are parameterized has a
relatively small effect on the global dynamics of the
system, but this is a property that cannot be readily
verified at this stage.

Time stepping in the ASH code is performed using an
implicit second-order Crank-Nicholson procedure for the
linear terms and a fully explicit second-order Adams-
Bashforth procedure for the nonlinear terms, with the
exception of the linear Coriolis forcing terms in the
momentum equation which are updated explicitly.
Because the explicit time-stepping procedure cannot be
performed in the spectral domain, such a pseudospectral
scheme necessitates conversions between the physical and
spectral representations during each time step when
switching between solving the implicit and explicit terms
in the evolution equations. However, the benefits gained
by solving the equations in the spectral domain outweigh
the added computational time spent in performing the
transformations between the physical and spectral
domains.

3. MODEL FORMULATION

3.1. Initializing the Spherically SymmetricMean State

We have constructed two shallow-shell simulations (cases
S1 and S2) that span a radial extent of 0.94–0.98R�, equiva-
lent to a shell thickness of 28 Mm. Two additional simula-
tions (cases D2 and D3) span 0.90–0.98 R�, or 56 Mm, and
are twice as thick as the two shallow-shell simulations. In
cases S2, D2, and D3, a solar-like differential rotation pro-
file is applied as a no-slip lower boundary. For comparison
purposes, the lower boundary of case S1 is maintained at a
uniform rotation rate equal to the angular velocity �0 of the
computational frame, with all other attributes equivalent to
case S2. In each of the four cases, the upper boundary is
stress-free and both the lower and upper boundaries are
impenetrable. The thermal driving in each case is accom-
plished by setting the heat flux at the lower boundary equal
to the solar value, while the upper boundary is held at a uni-
form and constant entropy. The parameters of the four
thin-shell simulations are summarized in Table 1.

As discussed in the previous section, the anelastic equa-
tions of motion are advanced in time by the ASH code using
a pseudospectral approach, wherein functions of colatitude
h and longitude � are expanded over spherical harmonic
functions characterized by angular degree ‘ and azimuthal
order m. Functions of radius are projected onto Chebyshev
polynomials characterized by radial order n. The four simu-
lations presented here are calculated using spherical har-
monic functions with a maximum angular degree
‘max ¼ 340, so that horizontal scales as small as about 10
Mm can be explicitly resolved. The highest order Chebyshev
polynomial used is n ¼ 64 in cases S1 and S2, and n ¼ 128 in
cases D2 and D3. Since we expect the resulting convection
to have a limited longitudinal scale and seek computational
economy, we impose a fourfold azimuthal symmetry by
keeping every fourth m value in the spherical harmonic
expansions for cases S1, S2, and D2. Such an imposed sym-
metry is primarily noticeable only in the high-latitude

TABLE 1

Summary of the Parameters of the Thin-Shell Convection Simulations

Parameter Case S1 Case S2 Case D2 Case D3

Radial extent (R�)........................ 0.94–0.98 0.94–0.98 0.90–0.98 0.90–0.98

Shell thickness (Mm).................... 28 28 56 56

Angular velocity�0/2� (nHz) ...... 410 410 410 410

Rotation period 2�/�0 (days) ...... 28.2 28.2 28.2 28.2

Shell density contrast ................... 7.5 7.5 18 18

�top (cm
2 s�1) ................................ 1� 1012 1� 1012 1� 1012 1� 1012

�top (cm
2 s�1) ................................ 1� 1012 1� 1012 1� 1012 1� 1012

Prandtl number Pr ....................... 1 1 1 1

Taylor number Ta........................ 5.4� 103 5.4� 103 2.1� 105 2.1� 105

Reynolds number Re.................... 1.4� 102 1.4� 102 2.2� 102 2.2� 102

Rayleigh number Ra .................... 1.9� 104 1.9� 104 5.4� 105 5.4� 105

Supercriticality Ra/Ra0 ............... 40 100 500 500

Averaging interval (days) ............. 140 140 36 10

Nr�Nh�N� ............................... 64� 512� 1024 64� 512� 1024 128� 512� 1024 128� 512� 1024

‘max .............................................. 340 340 340 340

Angular periodicity...................... Fourfold Fourfold Fourfold None

Lower boundary rotation............. Uniform Differential Differential Differential

Note.—The nondimensional fluid parameters Ta, Re, and Ra are defined as in Miesch et al. (2000) and are evaluated
at the middle of the layer. The quantitiesNr,Nh, andN� denote the number of computational gridpoints in physical space
across in r, h, and �, respectively.
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regions, where the convergence of meridional lines near the
poles limits the longitudinal scale of the convective struc-
tures to sizes smaller than are present at lower latitudes. In
addition, flows across the pole are not permitted. For com-
parison, case D3 was computed without such an angular
periodicity, but it is otherwise equivalent to case D2.

During initialization, the radial profiles of the mean
density ���ðrÞ, temperature �TTðrÞ, and pressure �ppðrÞ are deter-
mined by jointly solving equations (1)–(3), given radial pro-
files of the gravitational acceleration gðrÞ and specific
entropy gradient d�ss=dr throughout the domain. We specify
the initial entropy gradient to have a slightly superadiabatic
value (e.g., �d�ss=dr ¼ 10�7), while the function gðrÞ is taken
from the one-dimensional solar model of Brun, Turck-
Chièze, & Zahn (1999). The initial values of ���ðrÞ and �TTðrÞ
obtained in this way are shown in Figure 2 to compare
favorably with the one-dimensional structure model, with
the slight discrepancy in density resulting in a greater den-
sity scale height �� in our simulations than in the structure
model.

With our current angular resolution (‘max ¼ 340), we are
able to accommodate convection possessing horizontal size

scales as small as a few angular degrees. Consequently, we
place the upper boundary of each simulation at 0.98 R�,
where the imposed solar-like stratification should drive con-
vective structures similar in size to solar supergranulation.
The even greater degree of stratification present above this
radius is likely to drive modes of convection that are too
small in physical size to be resolved with our current grid
size. In addition, as the convection becomes less efficient
closer to the surface, typical convective velocities become a
significant fraction of the speed of sound thereby making
the anelastic approximation inappropriate. Furthermore,
the perfect-gas equation of state and the diffusive treatment
of radiative transfer currently used in these calculations
would not capture the effects resulting from the ionization
of hydrogen. Consequently, the upper boundary of each
simulation is located at 0.98R�.

The ASH code is a LES-SGS simulation and thus requires
a prescription to account for the transport of energy and
momentum by turbulent motions not explicitly resolved in
the simulations. We have adopted the simplest approach of
enhancing the molecular values of the viscous and thermal
diffusivities, while recognizing that such an SGS treatment
is unlikely to capture all dynamical effects of small-scale tur-
bulence. The eddy diffusivities �ðrÞ and �sðrÞ used in these
simulations are chosen to vary inversely as the square root
of the mean density profile, so that 	 ¼ 1

2 in

� ¼ �top
���

���top

� ��	

; �s ¼ �top
���

���top

� ��	

: ð11Þ

This particular value of 	 was chosen to allow some varia-
tion of the dissipation scale with the density scale height ��

but at the same time prevent numerical instabilities near the
bottom of the domain, where the dissipation length scale is
smallest. The free parameters �top and �top in equation (11)
are the viscous and thermal diffusivities at the upper
boundary, which we have set to �top ¼ �top ¼ 1� 1012 cm2

s�1 in each case. Consequently, the Prandtl number
Pr ¼ �=�s ¼ �top=�top throughout each domain is unity. We
note that as computing technology becomes more
advanced, the parameterization scheme used to account for
SGS transport effects in simulations of highly turbulent flu-
ids should become less of an issue because such global simu-
lations will be able to explicitly resolve the convective
motions and associated energy transport at smaller
dynamical scales.

In order to prevent the formation of thin diffusive ther-
mal layers having a radial thickness below the current
radial resolution, we have introduced an unresolved
enthalpy flux to the mean state, much as in Miesch et al.
(2000). Without such enhancement, steep entropy gra-
dients would otherwise be required to carry the imposed
heat flux, owing to the small radial fluid velocities (and
thus the convective transport of heat) in the vicinity of
the impenetrable boundaries.

The characteristic size scales of the convective structures
that appear near the top of these thin-shell simulations are
somewhat sensitive to the degree of driving they experience,
which is in part determined by the functional form of the
unresolved enthalpy flux. The form of this quantity essen-
tially determines what fraction of the total energy flux must
be transported via convection near the top of the domain,
which in turn feeds back on the entropy gradient and affects
the convection. We find that adjusting either the diffusivities
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or the superadiabaticity within the domain (that is, altering
the Rayleigh number of the convection) will alter the
appearance of the convection, especially near the upper
boundary. We have chosen a somewhat gentle functional
form for this enthalpy flux, having an e-folding depth away
from each boundary of about 0.01 R� for both the shallow
and deep shell cases.

Finally, the radiative diffusivity �rðrÞ throughout each
domain is taken from the structure model used above; how-
ever, we note that the radiative heat flux is several orders of
magnitude smaller in our simulations than convective heat
flux throughout the bulk of the domain (as it is in the Sun).

3.2. Approach to Thermal Equilibrium

Once the spherically symmetric mean state has been
arranged, small seed perturbations are introduced into the
fluctuating entropy field s, and the simulations are advanced
in time using the evolution equations (5) and (6). The seed
entropy perturbations are soon reflected in the fluctuating
density field �, whose variations quickly provide the un-
stable density imbalance that buoyantly accelerates the fluid
from rest. After an initial period of adjustment during which
the convective kinetic energy ramps up (typically about 30
days, as shown in Fig. 3 for case D2), an approximate
thermal equilibrium is reached. The mean thermodynamic
state will evolve in time, as reflected in the ‘ ¼ 0 component
of the thermodynamic variables.

In total thermal equilibrium, the outward energy trans-
port in these simulations must be achieved by a balance of
radiative, kinetic, enthalpy, and eddy diffusive fluxes, as

represented by

Fk ¼ ur
���u2

2

� �
; ð12Þ

Fe ¼ ur���cpðT � Th iÞ ; ð13Þ

Fr ¼ ��r���cp
@ð�TT þ TÞ

@r
; ð14Þ

Fu ¼ ��s����TT
@ð�ssþ sÞ

@r
; ð15Þ

where the kinetic, enthalpy, radiative, and unresolved eddy
fluxes are denoted by Fk, Fe, Fr, and Fu respectively. The
quantity T � Th i appearing in the definition of Fe is the
temperature excess relative to the mean (spherically sym-
metric) value of the temperature field at each radial level. In
a true steady state, the total energy transport at each radius
within the domain must equal the imposed energy influx at
the lower boundary:

4�r2ðFk þ Fe þ Fr þ FuÞ ¼ L� ; ð16Þ

where L� is the solar luminosity.
Figure 4 shows the time-averaged energy transport within

cases S2 and D2 as a function of radius at a late stage in the
simulations. In both cases, the enhanced energy transport
by the unresolved eddies near the boundaries reflects the
additional enthalpy flux applied to the mean state. Figure 4
also shows that case D2 is not yet in total thermal equili-
brium, as the energy output at the upper boundary is
approximately 80% of the input applied to the lower boun-
dary. The radial energy transport within case S1 is qualita-
tively similar to case S2, and likewise for cases D2 andD3.

4. CHARACTERISTICS OF RESULTING FLOWS

4.1. Multiscale Convection

The convective flow patterns in these simulations are
intricate, containing complex evolving structures occurring
on multiple size scales. We illustrate typical velocity pat-
terns in Figures 5 and 6 by showing the radial velocity for
cases S2 and D2 at several depths within each domain. The
horizontal structure of the radial velocity fields realized in
cases S1 and D3 are qualitatively similar to cases S2 and D2,
respectively.

Figures 5a and 6a show that the largest scale of convec-
tion visible near the top of both cases S2 and D2 is associ-
ated with a connected network of downflow lanes (green-
blue colors) having a spatial scale of about 200 Mm. The
large areas enclosed by the downflow lanes each contain sev-
eral smaller scale upflows (orange-red colors) measuring
about 15–30 Mm across. Although the upflow cells in the
shallow shell (case S2) tend to be slightly larger than those
in the deeper shell (case D2), this general surface pattern of
a network of connected downflow lanes enclosing several
distinct smaller upflows appears to be a robust property of
convection within our thin shells. The size of the smaller
upflows in these simulations is approximately 20 Mm, simi-
lar to the horizontal size scale of solar supergranulation.

Figures 5b, 5c, 6b, and 6c illustrate how the horizontal
planforms change with depth within cases S2 and D2. As
the downwelling fluid reaches deeper layers, the degree of
connectivity of the downflow network appears to decrease,
since the vertical velocities along each downflow lane
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inset gives an expanded view of the later evolution and illustrates the
continuing growth of both quantities following the initial ramp-up phase.
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Fig. 5.—Instantaneous snapshots of radial velocity for case S2 near the (a) top, (b) middle, and (c) bottom of the domain. Positive radial velocities (orange-
red colors) denote upflows, and negative radial velocities (green-blue colors) denote downflows. Each image in the top row is an orthographic projection of the
velocity field, with the north pole tilted 20� toward the observer and the equator indicated by a white line. Each enlarged image in the bottom row shows a
rectangular (latitude-longitude) projection of a 45� square portion of the corresponding velocity field in the top row. The fourfold azimuthal periodicity is most
noticeable near the north pole.
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become much less uniform. Near the bottom of each
domain, the downflows have fragmented into more isolated
and compact plumelike structures while retaining a vestige
of the connected network of downflow lanes seen near the
surface. This narrowing of scale with depth appears to be
related to the larger densities found near the bottom of each
domain.

The strongest downflow lanes in the equatorial region of
case D2 possess a noticeable north-south orientation that is
somewhat reminiscent of the banana-cell modes evident in
more laminar spherical shell convection simulations (e.g.,
simulation LAM in Miesch et al. 2000). However, the col-
umnar structures seen in case D2 are much thinner, have
more spatial variation, and evolve more quickly than the
banana cells in the more laminar cases, as a result of
the strong small-scale convection driven throughout the
domain.

The smaller scale upflows visible near the upper boundary
of these simulations also change their character with depth.
The distinct upflows enclosed by downflow lanes seen in the
upper layers gradually become more uniform, forming
broad regions of upwelling fluid surrounded by an incom-
plete network of downflow lanes. Near the lower boundary,
these broad upflow regions have largely disappeared, with
the fastest upward velocities occurring in shrouds surround-
ing each of the strong downflows in response to the impene-
trable lower boundary that exists at the bottom of the
domains. Figure 7 contains vertical cuts of the radial veloc-
ity field showing the variation with latitude and radius for

cases S2 and D2. The radial structure of the upflow regions
is most evident in case D2 (Fig. 7b), wherein the smaller
scale yet faster upflows are only evident near the upper
boundary of the domain.

Figure 8 shows the time evolution of the radial velocity
field of case S2. Such time series illustrate the tendency for
features in the flow field to be systematically advected by
velocity patterns possessing a larger scale. One small upflow
(arrow) as well as the downflow lane immediately to its left
are both advected laterally by the horizontal outflow
motions associated with the broader cell. The center of this
broad outflow cell is indicated by a cross. Such lateral trans-
port of velocity features by larger scales of convection is
most apparent in movie sequences showing the time evolu-
tion of the radial velocity field.

In addition to the network of downflow lanes possessing
larger spatial scales than are observed at the solar photo-
sphere, we also find that these structures persist for longer
time intervals than their counterparts on the Sun. For exam-
ple, the time series shown in Figure 8 illustrates that the
prominent downflow network visible near the upper surface
of case S2 evolves on timescales longer than about 10 days.
Similar evolutionary timescales are evident in case D2 as
well. Such discrepancies between the numerical simulations
and the observations is not surprising, since the level of tur-
bulence is much lower (by several orders of magnitude) in
our simulations than for the Sun. Furthermore, at 0.98 R�
the upper boundaries of the simulations are located below
the radius of the photosphere and consequently may not

Fig. 6.—Same as in Fig. 5, except for case D2, showing the radial velocity structure sampled near the (a) top, (b) middle, and (c) bottom of the deep-shell
simulation.
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accurately depict the convective cell patterns that would
exist above this radius.

In Figure 9 we present space-time diagrams of radial
velocity sampled in time for four specific latitudes (and
all longitudes) at a radius of 0.978 R� for case S2, plot-
ted with respect to the rotation rate of the computational
frame �0. The advection of radial velocity structures
appear as slanted features in each panel, with the higher
latitudes rotating more slowly (retrograde) than those
near the equator. The mean advection rate of these radial
velocity patterns evident in the figure approximately
equals the differential rotation rate of the fluid for the
same depth; consequently, the latitudinal variation of
angular velocity shown in the figure results largely from
the imposed differential rotation at the lower boundary.
However, it is interesting to note from Figure 9 that the
pattern speed of the advected structures does vary with
longitude, as structures having the same latitude but sep-

arated in longitude may exhibit slightly different rates or
propagation.

At the midpoint in radius of their respective domains, the
rms radial velocities are measured to be 105 m s�1 for case
S2 and 140 m s�1 for case D2, with overturning times on the
order of 6–10 days, depending on the shell depth. These
overturning times suggest that the large-scale convective
pattern may be weakly sensitive to rotational effects, as both
cases S2 and D2 are rotating at the solar-like mean rate of
one rotation per 28 days. We will discuss the rotational
influence of these convective overturning motions in more
detail in x 4.3.

Figure 10 shows the fluctuating temperature field for case
D2, after removing the spherically symmetric component of
the temperature at each radius. We find that the locations of
the large regions of warm and cool temperatures correlate
well with the locations of the broad upflows and narrow
downflow lanes visible in the radial velocity field shown in

Fig. 8.—Time series of radial velocity images showing a 20� square region of case S2 near the upper boundary in which the lateral advection of small-scale
features by larger scale horizontal motions is illustrated. The arrow points to one such small-scale upflow, which is advected away from the center of the
broader upflow (dark cross). The time index of each image is indicated in the upper left-hand corner, and the cadence is about 1.3 days between images.

Fig. 7.—Images of the instantaneous radial velocity for cases S2 and D2 as a function of latitude and radius in a cut of fixed longitude, showing the vertical
structure of the pattern of upflows and downflows within each domain. The fastest small-scale upflows are particularly visible near the top of case D2.
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Figure 6, with the primary difference being that the cooler
regions tend to be much broader than their associated radial
velocity counterparts. This feature is somewhat surprising
given the equal thermal and viscous diffusivities (i.e.,
Pr ¼ 1) within case D2, and is likely indicative of the degree
to which the cool fluid associated with the strong downflow
lanes undergoes mixing.

Near the equator, the temperature field is dominated by
columns of alternating warm and cold fluid associated with
the weak banana-cell–like structures visible in the radial
velocity images. In both temperature and radial velocity,
these structures are sheared slightly by the differential rota-
tion within the domain and extend up to about �30� of
latitude. (For comparison, the cylinder tangent to the inner
radius intersects the outer radius at about �20� of latitude.)
These large-scale columnar temperature structures are
broken up by smaller scale variations on the temperature
field, which also tend to correlate well with some of the

small-scale radial velocity features. For example, the local-
ized hot and cold spots particularly evident in the close-up
views of Figure 10a are coincident with some of the fastest
fluid motions visible in the radial velocity image of Figure 6.

Near the upper boundary of case D2, there exists a signifi-
cant latitudinal temperature contrast between the equator
and the poles, as shown in Figure 11. The temperatures in
the near-polar regions are about 10–15 K warmer than near
the equator, although over half of the total equator-to-pole
difference occurs within 10� of the pole. As stated earlier, we
believe that many characteristics of the fluid in the near-
polar regions are most likely artifacts of the fourfold azimu-
thal periodicity imposed in these simulations, and should be
interpreted with care.

4.2. Axisymmetric Flow Patterns

The time-averaged axisymmetric (longitudinally aver-
aged) profile of angular velocity �/2� achieved within each
simulation is shown in Figure 12, with the quantity � now
corresponding to the angular velocity in the rotating frame
after the angular velocity of the computational frame �0 is
subtracted out. The no-slip rotating boundary is imposed
such that equatorial rate corresponds to the rotation rate of
the computational frame, such that �=2� ¼ 0 at these
points. The differential rotation of the lower boundary
imposed in cases S2, D2, and D3 decreases from �=2� ¼ 0
nHz at the equator to about �=2� ¼ �120 nHz at a latitude
of 75� and is similar in contrast and functional form to the
latitudinal variation of the photospheric plasma rate mea-
sured by Snodgrass (1984). For comparison purposes, the
no-slip lower boundary imposed in case S1 is uniformly
rotating at�=2� ¼ 0 nHz.

With the exception of the polar regions (not shown in the
figure), the angular velocity profile within each simulation is
retrograde with respect to the rotating coordinate system, with
the fastest rotation rates occurring near the bottom of each
shell at any given latitude. Figure 12 shows that cases S1 and
S2 possess a largely constant negative radial gradient of angu-
lar velocity with radius at each point (see also Fig. 14), with the
overall magnitude of � determined by the rotation rate
imposed at the corresponding latitude on the lower boundary.
Within casesD2 andD3, the negative radial gradients in angu-
lar velocity throughout the bulk of each shell are smaller,
except within the thin viscous boundary layers located near
the lower boundaries of both simulations.

The regions poleward of �75� of latitude are not shown
in Figure 12 because of the high angular velocities present
there. Even though these regions exhibit reasonable (linear)
zonal velocities, the short moment arm at such high lati-
tudes produces higher values of � than are seen elsewhere
within the domain at lower latitudes. Furthermore, the
polar regions of cases S1, S2, and D2 are dominated by
effects related to the fourfold azimuthal periodicity imposed
in these simulations, which disallows flows across the poles
and limits the physical size of convective structures. Such
effects are likely to produce dynamics that may not be other-
wise present in analogous simulations without the fourfold
azimuthal symmetry. Although all longitudes are computed
in case D3, it was started from an evolved solution of case
D2 and still shows some effects of the angular periodicity
imposed in that simulation.

The time-averaged meridional circulation achieved in our
simulations is illustrated in Figure 13, where the profile of

Fig. 9.—Near-surface radial velocity structures at four latitudes from
case S2, plotted as a function of time and longitude. As labeled, the four
panels correspond to latitudes of 0�, 30�, 45�, and 60�. The retrograde
propagation rate of these features, quantified by the tachometer, is a reflec-
tion of the no-slip differentially rotating lower boundary.
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the meridional velocity streamfunction � for each simula-
tion is shown. Most of the kinetic energy associated with the
meridional flows is contained in 15� wide latitudinal rolls
distributed across the mid-latitude and equatorial regions.
These rolls span the entire depth of the domain both in the
shallow- and deep-shell simulations and possess typical flow
speeds of 50–75 m s�1. Rolls having poleward velocities in
the surface layers appear to be preferred over rolls having

the opposite rotational sense, especially in the mid- and
low-latitude regions, as they are generally more extended
horizontally and possess faster fluid velocities.

Alternatively, one could view these meridional flow pat-
terns as an array of symmetric clockwise and counterclock-
wise rolls superimposed on a single meridional cell in each
hemisphere. We shall see that the magnitude of the single
hemispheric meridional cell is larger relative to the smaller
scale rolls when the lower boundary is differentially rotat-
ing, as in cases S2, D2, and D3. We note, however, that
because these simulations have impenetrable boundaries,
any meridional flow achieved in our simulations is forced to
close within the (relatively shallow) domain. In this regard,
the profiles of meridional circulation obtained in these four
simulations are likely to be unrealistic, as the Sun obviously
does not contain impenetrable boundaries above and below
the near-surface shear layer.

4.3. AngularMomentum Balance

In order to understand the maintenance of the differential
rotation profiles shown in Figure 12, we will now examine
the angular momentum balance within each of the four sim-
ulations in more detail. We will consider only axisymmetric
quantities, defined by

ÂAðr; 
Þ ¼ 1

2�

Z 2�

0

d�Aðr; 
; �Þ ; ð17Þ

where the hat overA signifies that the quantity Aðr; 
; �Þ has

Fig. 10.—Similar to Fig. 6, but showing the horizontal structure of the temperature perturbation sampled near the (a) top, (b) middle, and (c) bottom of the
domain, with the mean temperature for each level removed. Orange-red colors denote warmer fluid, green-blue colors denote cooler fluid.
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been averaged over longitude � and further over time. Con-
sequently, this operation allows the decomposition

Aðr; 
; �Þ ¼ ÂAðr; 
Þ þ A0ðr; 
; �Þ such that ÂA0 ¼ 0 ; ð18Þ

where the prime onA0 denotes the nonaxisymmetric compo-
nent ofA.

By multiplying the zonal component of the momentum
evolution equation (5) by r sin 
, we can derive an equation
describing the evolution of the angular momentum
L̂L ¼ ���r sin 
 bu�u�, written in conservative form as

@L̂L

@t
¼ �

D

xF ; ð19Þ

where F is the angular momentum flux vector. In a statisti-
cally steady state, we must have @L̂L=@t ¼ 0, such thatD

xF ¼ 0 throughout the domain. Symbolically, the compo-
nents of the total flux in the radial and latitudinal directions
can be written as

Fr ¼ FDIF
r þ FRS

r þ FMC
r K ; ð20Þ

F
 ¼ FDIF

 þ FRS


 þ FMC

 ; ð21Þ

where we have used the abbreviations in capital letters to
signify the contributions to the total angular momentum
flux resulting from viscous diffusion (DIF), nonaxisymmet-
ric Reynolds stresses (RS), and axisymmetric meridional

Fig. 12.—Angular velocity �/2� relative to the rotating coordinate system as a function of latitude and radius for each case, averaged over longitude and
time. A no-slip differentially rotating lower boundary is imposed in cases S2, D2, and D3. That imposed angular velocity decreases from 0 nHz at the equator
to about�120 nHz at a latitude of 75�. Case S1 has a uniformly rotating no-slip lower boundary. The images are scaled between 0 and�D�/2�, with a limit of
�20 nHz for case S1 and�120 nHz for cases S2, D2, andD3.
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circulation (MC):

FDIF
r ¼ ����r sin 
 �r

@

@r

bu�u�
r

� �� �
; ð22Þ

FRS
r ¼ ���r sin sin
du0�u0ru0�u

0
r ; ð23Þ

FMC
r ¼ ���r sin 
bururð bu�u� þ �0r sin 
Þ ; ð24Þ

and

FDIF

 ¼ ����r sin 
 �

sin 


r

@

@


bu�u�
sin 


� �� �
; ð25Þ

FRS

 ¼ ���r sin 
du0
u0�u0
u

0
� ; ð26Þ

FMC

 ¼ ���r sin 
 bu
u
ð bu�u� þ �0r sin 
Þ : ð27Þ

By examining the contributions to the total angular
momentum flux from each of these components, we will
show that the radial gradients of angular velocity realized in
each of the four simulations are supported against diffusion
by Reynolds stresses associated with nonaxisymmetric con-
vective motions. This behavior can be thought of as the ten-
dency of convective fluid elements to partially conserve
their angular momentum per unit mass � ¼ �r2 sin2 
 as
they move toward or away from the axis of rotation. As sug-
gested by Foukal & Jokipii (1975), constancy of � along
radial lines may also explain why surface magnetic tracers
on the Sun have a faster rotation rate relative to the surface

Fig. 13.—Mass flux stream function� associated with the meridional circulation for each case, averaged over longitude and time. Contours of constant �
coincide with velocity streamlines, with positive values representing flow in the clockwise sense. The limiting values �D� are �4� 1023 cm3 s�1 for cases S1
and S2, and�6� 1023 cm3 s�1 for cases D2 andD3. The corresponding flow velocities in the meridional plane are of order 50 and 75m s�1, respectively.
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fluid, if one assumes that the magnetic features are anchored
at a radius slightly below the photosphere where the rota-
tion rate is faster. Gilman & Foukal (1979) tested this
notion by numerically modeling Boussinesq convection
confined to a thin shell, and they found that angular
momentum was roughly conserved along local radii for the
case of an incompressible fluid. They demonstrated that the
convective motions were able to transport angular momen-
tum inward, thereby maintaining the negative radial
gradient of rotation rate with radius. The models pre-
sented here indicate that compressible convection behaves
similarly.

We begin by examining the angular momentum balance
within the two shallow-shell simulations, cases S1 and S2.
These two simulations are identical, except that case S2 has
a differentially rotating lower boundary, whereas in case S1
it is forced to rotate uniformly. The upper boundary in both
cases is stress-free. From Figure 12 it is apparent that the
radial angular velocity gradient @�=@r is negative over a
broad range of latitudes. This effect is further illustrated in
Figure 14, where the angular velocity profiles shown in Fig-
ure 12 for cases S1 and S2 are plotted as a function of radius
for selected latitudes. The dash–triple-dotted lines in each
panel indicate the angular velocity of an isolated fluid par-
cel, assuming it were moving in a purely radial direction and
conserving � (making� / r�2).

Figure 15 illustrates the contributions to the total radial
and latitudinal angular momentum fluxes from each of the
component fluxes listed in equations (20) and (21). The
radial fluxes of cases S1 and S2 are shown in Figures 15a
and 15b after integrating over latitude. In both cases, the
average angular momentum fluxes associated with viscous
diffusion FDIF

r and meridional circulation FMC
r are positive

at all radii, signifying a transport of angular momentum
toward the top of the domain. We find that this upward
transport is balanced almost entirely by the downward

transport achieved by nonaxisymmetric Reynolds stresses
associated with the nonaxisymmetric convective motions.
For this effect to occur in this manner, the velocity correla-
tion du0ru0�u0ru0� must be negative on average by equation (23) for
FRS
r < 0, indicating that small-scale nonaxisymmetric radial

motions, such as the fast downflows, tend to possess a retro-
grade tilt in the r-� plane. Such a tendency is exactly what
one would expect if nonaxisymmetric convective motions
were to partially conserve their angular momentum per unit
mass � in radial motion.

In the Sun, while @�=@r is negative between 0.94 and
0.98 R�, its magnitude is much smaller than in cases S1
and S2, as shown in Figure 14. In the figure the dash-
dotted lines denote the run of � with radius as deter-
mined from helioseismology. Since the viscosity of the
Sun is much lower, and since the solar meridional circu-
lation is of the same magnitude as in our shallow-shell
cases, the tendency for nonaxisymmetric convective
motions to conserve � is likely to be less effective in the
Sun between 0.94 and 0.98 R� than in the numerical sim-
ulations presented here. The helioseismic results surface-
ward of 0.98 R�, also plotted in the figure, suggest that
the smaller scale convective motions located closer to the
photosphere may tend to conserve their angular momen-
tum more fully, thereby maintaining a steeper angular
velocity gradient @�=@r in this region.

Figure 14 shows that both cases S1 and S2 possess viscous
boundary layers near the bottom of each domain, especially
at higher latitudes. These Ekman-type layers are formed in
response to the zonal velocity imposed at the lower boun-
dary in each case and have no physical analog in the Sun.
Within this boundary, the influence of viscous dissipation is
large enough to flatten out the angular velocity gradient at
low latitudes and even produce a positive @�=@r at the
higher latitudes (e.g., at 60� in Fig. 14). We shall see that this
effect is even more pronounced in cases D2 andD3.
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Fig. 14.—Angular velocity profiles for cases S1 (solid lines) and S2 (dashed lines) as a function of radius for latitudes 0�, 30�, 45�, and 60� as indicated. The
dash–triple-dotted line in each panel represents the angular velocity of a radially moving fluid parcel for which its angular velocity per unit mass � is conserved,
while the dash-dotted line corresponds to the GONGdata plotted in Fig. 1.
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The latitudinal flux of angular momentum in cases S1 and
S2 is shown in Figures 15c and 15d after integrating in
radius. We find that case S2, having a differentially rotating
lower boundary, has a much stronger poleward transport of
angular momentum relative to case S1 in which the lower
boundary is uniformly rotating. This effect is an expected
consequence due the additional angular momentum being
removed from the system at the lower boundary in the near-
polar regions of case S2, since the lower boundary in this
case is differentially rotating rather than uniformly rotating
as in case S1. Such an enhanced poleward transport of angu-
lar momentum within case S2 is achieved primarily by the
convective motions, and to a lesser degree by the meridional
circulation, as illustrated by the magnitudes of the fluxes
FRS

 and FMC


 in Figure 15d. A recent analysis of photo-
spheric velocity images suggests that there may be observa-
tional evidence of a similar effect occurring on the Sun,
where the Reynolds stresses associated with solar super-
granulation yield a poleward transport of angular momen-
tum within the near-surface layers of the Sun (Hathaway,
Gilman, & Beck 2001).

Superimposed on the broad poleward transport, the
angular momentum fluxes FRS


 and FMC

 possess significant

latitudinal fluctuations that are directly correlated with the
axisymmetric rolls of Figure 13. We find that the contribu-
tions to FMC


 from the latitudinal rolls is partially offset by
matching contributions to FRS


 , such that the net angular
momentum transport by the rolls is somewhat limited.

Turning to the deep-shell simulations of cases D2 and
D3, we find that the angular velocity � possesses radial gra-
dients similar to those achieved within cases S1 and S2.
Radial cuts through each domain, such as those presented
in Figure 16, show that the radial gradient of angular veloc-
ity is negative above 0.91R� for each of the latitudes shown.
The primary difference between the shallow and deeper
shells is the magnitude of the viscous boundary layer adja-

cent to the lower boundary. The radial gradients of � are
larger in magnitude across the viscous boundary layer for
the deeper shells, causing the diffusive transport of angular
momentum down the radial gradient of � to be correspond-
ingly greater in cases D2 and D3 than for cases S1 and S2.
This enhanced diffusive transport is illustrated in the curves
of FDIF

r of Figures 17a and 17b, where the greater torques
applied to the fluid via the no-slip lower boundary are evi-
dent in the enhanced diffusive fluxes FDIF

r within cases D2
and D3. Elsewhere in the domain, viscous effects play a
reduced role compared to the radial angular momentum
transport achieved by the meridional circulation and
Reynolds stresses. As in cases S1 and S2, the radial Rey-
nolds stress flux FRS

r is negative and the radial meridional
circulation flux FMC

r is positive on average throughout the
entire domain.

Figures 17c and 17d show the latitudinal fluxes of angular
momentum within cases D2 and D3, after integrating over
radius. These two cases indicate that angular momentum is
primarily transported poleward throughout the domain by
the meridional circulation (rather than by the Reynolds
stresses as in cases S1 and S2). However, the 15� rolls now
contain more kinetic energy than their counterparts in the
shallow-shell simulations, and consequently the variations
superimposed on FMC


 are larger. As with the shallower
cases, the Reynolds stress flux FRS


 due to these rolls tends to
partially offset the latitudinal transport of angular momen-
tum by meridional flows. By comparing each of the four
simulations, we suspect that the strength of the meridional
rolls in our thin-shell domains is affected by the shell depth,
which effectively limits the radial extent of any meridional
circulation within the domain.

In summary, the timescales of the largest overturning
motions in our simulations suggest that they are at least
weakly influenced by rotational effects, which in turn may
enable Reynolds stresses to facilitate transport angular

Fig. 15.—Components of the (a and b) radial and (c and d ) latitudinal angular momentum fluxes for cases S1 and S2. Positive values of Fr and Fh indicate
upward and southward transports, respectively.
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momentum inward. This inward angular momentum trans-
port balances the outward transport by diffusion and
meridional flows on average, therebymaintaining a negative
angular velocity gradient throughout much of the layer at
low and midlatitudes. This effect may contribute to the
observed decrease of � with radius in the near-surface shear
layer of the Sun as deduced from helioseismic analyses.
Behavior at high latitudes is somewhat more complex owing
to the presence of a viscous boundary layer near the lower
boundary, and likewise there is some uncertainty in the

helioseismic inferences about the radial gradient in �
achieved at latitudes of 60� or greater.

5. CONCLUSIONS

We have presented results of three-dimensional numerical
simulations of turbulence confined to thin rotating spherical
shells, seeking to understand some of the dynamical effects
that supergranular scales of motion within thin shearing
layers might have within the analogous layer located near
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Fig. 16.—Similar to Fig. 14, except for the deep-shell simulations, cases D2 (solid lines) and D3 (dashed lines). The dash–triple-dotted line in each panel
represents the angular velocity of a radially moving fluid parcel for which its angular velocity per unit mass � is conserved, while the dash-dotted line corre-
sponds to the GONGdata plotted in Fig. 1.

Fig. 17.—Components of the (a and b) radial and (c and d ) latitudinal angular momentum fluxes for cases D2 and D3. Positive values of Fr and Fh indicate
upward and southward transports, respectively.
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the top of the solar convection zone. We have focused our
analysis on the physical processes that enable the transport
of angular momentum within the thin shell domains, in
order to investigate analogous angular momentum trans-
port on the Sun and to determine the cause of the negative
radial angular velocity gradients shown to exist within the
near-surface shear layer of the Sun.

The high-resolution simulations presented here allow
horizontal structures of order 10 Mm to be explicitly
resolved, thereby allowing us for the first time to incor-
porate dynamical scales on the order of solar supergranu-
lation within global simulations of solar convection. We
find that the broad spectrum of scales of motion, while
typically much smaller in size than the largest characteris-
tic length scales of the convection zone, are able to influ-
ence the large-scale dynamics of the system through their
ability to transport angular momentum within the shells
on a global scale.

The vigorous convection realized in each of the four simu-
lations presented here is driven by imposing the solar heat
flux at the lower boundary of each domain. Shell thicknesses
of 4% and of 8% of the solar radius R� are considered, with
the upper boundary in each case located at a radius of 0.98
R�. We have imposed a differentially rotating no-slip lower
boundary in three of the four simulations. Both the
lower and upper boundaries are impenetrable, and the
upper boundary is forced to remain at a constant entropy.

We find in all cases that near the middle of the domain the
convection takes the form of a connected network of fast
yet narrow downflow lanes that enclose broad regions of
warmer, more slowly rising fluid. The cells enclosed by the
downflow network typically measure 100–200 Mm across,
with the lanes themselves about 20 Mm wide. In the deeper
layers where the density is greater, this network loses much
of its horizontal connectivity, instead forming more plume-
like structures that approach the bottom of the domain, at
which point the impenetrability of the lower boundary
forces the fluid to be diverted horizontally.

Closer to the surface, the broad cells of upwelling fluid
are found to segment into several smaller upflows having
a horizontal scale comparable to that of solar super-
granulation, of order 20–40 Mm. These small-scale upflow
cells appear in both the shallow- and deep-shell simulations,
suggesting that the more superadiabatic stratification
present near the top of each domain, rather than the depth
of the shell, is the primary factor that determines the mor-
phology of the convection near the surface. Time series of
the evolving near-surface flow field show that both the
smaller upflow cells as well as the narrow downflow lanes
are horizontally advected in a sustained fashion as they
respond to larger scale sweeping flows that develop nearby.

Averaging the flow fields in longitude reveal that the
angular velocity decreases with radius in the low- and mid-
latitude regions of each domain, with the exception of a thin
viscous boundary layer that forms near the no-slip lower
boundary in each case. An analysis of the angular momen-
tum balance shows that such negative radial gradients of
angular velocity are maintained by an inward transport of
angular momentum, achieved by Reynolds stresses associ-
ated with the convective motions that balance the outward
transport of angular momentum from viscous diffusion and
the global meridional circulation. Such an inward transport
is achieved if radially moving fluid motions, such as the
broad upflows and strong downflows seen here, have the

tendency to conserve their angular momentum per unit
mass while moving radially throughout the shell.

The longitudinally averaged meridional velocity patterns
take the form of a series of 15� latitudinal rolls that span the
full radial thickness of each shell, with cells having a pole-
ward surface flow tending to have a broader latitudinal
extent than cells with the opposite sense. The net effect of
these rolls is to transport angular momentum poleward, as
required by latitudinally varying angular momentum flux
imposed by the differentially rotating lower boundary.
However, we reemphasize that the profiles of meridional cir-
culation within these thin-shell simulations are significantly
influenced by the impenetrable radial boundaries of our
simulations, effectively forcing any circulation in the meri-
dional plane to be completely enclosed within the domain.
As a result, the meridional flow profiles realized here are not
expected to resemble the solar case.

The continual advance of supercomputing technology
will allow simulations of convection within thin spherical
shells to be extended to deeper layers in the future. Such
models would preclude having to add angular momentum
to the system via no-slip boundary conditions, as the differ-
ential rotation and near-surface shear layer could then be
computed in a self-consistent manner. In addition, large-
scale flows driven by the small-scale convective patterns that
would not normally be confined to the near-surface layers
(such as the meridional circulation) would then be allowed
to feed back on the deeper layers below. Preliminary
attempts to construct such global models, encompassing the
bulk of the convection zone as well as a more highly re-
solved layer where convection on supergranular scales can
exist, are currently underway.

We also believe the treatment of subgrid scale (SGS) con-
vective motions not explicitly resolved in our simulations
deserves considerable attention in the future. The current
prescription, whereby the diffusivities are enhanced over
their thermal and molecular values, is adopted only for sim-
plicity and likely does not capture all of the relevant effects
of the unresolved scales on the global dynamics. Other treat-
ments, such as those discussed in x 2 whose functional forms
depend on the shearing properties of the resolved flows,
may be more appropriate.

Nevertheless, the thin-shell simulations presented here
contain highly evolving, multiscale convective motions that
are able to efficiently redistribute angular momentum in
both radius and latitude. Such motions are found to main-
tain the radial shear within the domains, even in this ideal-
ized environment that only approximates the near-surface
shear layer of Sun by decoupling it from the bulk of the con-
vection zone. We also speculate that convection in the near-
surface layers of the Sun may behave in a similar fashion,
maintaining the negative radial gradients in the near-surface
shear layer of the Sun as deduced from helioseismology.
While we are admittedly still far removed from directly
modeling a convective layer with realistic solar parameters,
it is encouraging that the flow patterns realized in these sim-
ulations exhibit the multiple scales of supergranulation and
the more global convection cells being deduced from local
helioseismic probing of the near-surface shear layer.
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